Producto añadido correctamente al carrito

Continuar comprando

Realizar pago


Suscribete a nuestro newsletter

Construction and strength of aircraft part 1. Construction and strength of main components of gas turbine engines - Sergey Doros Ver más grande

Construction and strength of aircraft part 1. Construction and strength of main components of gas turbine engines


Autor: Sergey Doroshko
Editorial: Universidad de San Buenaventura Bogotá
Edición: Primera, 2005
Formato: Libro
Rustico 16.5  x 24 cm
352 Paginas
Peso: 0.673 Kg
ISBN: 9589744583
Click para ver: Reseña - Contenido

Más detalles

Libro disponible ¡Pídalo ya!

COP$ 25.000


Reseña: Construction and strength of aircraft part 1. Construction and strength of main components of gas turbine engines

 The overwhelming majority of contemporary aircraft engines are heat engines. A heat engine is a machine, which converts heat energy into mechanical work. Any heat engine consists of:

  • A combustion chamber (combustor) where chemical energy, which is contained in fuel, converts, to heat energy;
  • A device, which converts heat energy to mechanical work (sometimes a heat engine has several similar devices and energy is transformed in various stages of steps);
  • A propulsive device (propulsor), which directly realizes the motion of the aircraft.


Contenido: Construction and strength of aircraft part 1. Construction and strength of main components of gas turbine engines

1               Aircraft engine classification
1.1             General classification
1.2             Piston engine classification
1.3             Jet engine classification
1.4             Gas turbine engine classification
2                 Gas turbine engine arrangement
2.1              Turbojet arrangement
2.2              Turbofan arrangement
2.3              Turboprop, turboshaft, and auxiliary power unit arrangement.
2.4              Propfan arrangement.
3                  Compressor
3.1              Arrangement of axial-flow compressors
3.2              Compressor rotors
3.2.1            Blades and their retention        Blade design        Blade securing
3.2.2           Rotor structure        Drum-type rotors        Disc-type rotors        Disc-drum rotors        Combined rotors
3.3              Compressor stators
3.3.1           Vane casing
3.3.2           Stator vanes
3.3.3           Compressor frames
3.4              Compressorsystems
3.4.1           Anti-surge system        Control of rotational velocity        Control of the absolute (axial) velocity direction        Control of the absolute (axial) velocity value        Features of anti-surge systems
3.4.2           Anti-icing system
3.4.3          Sealing system
3.4.4          System for axial unloading of the compressor rotor
3.5             Centrifugal-flow compressors
3.5.1          Arrangement for centrifugal-flow compressors
3.5.2          Centrifugal-flow compressor design
3.5.3          Systems of a centrifugal-flow compressor
4                Gas turbines
4.1             Axial-flow turbine arrangement
4.2             Turbine rotors
4.2.1          Turbine blades
4.2.2          Rotor structure
4.3            Turbine stators
4.3.1         Turbine casings
4.3.2         Turbine guide nozzles
4.4            Turbine systems
4.4.1         Sealing systems
4.4.2         Turbine cooling        External cooling        Internal cooling        Protective cooling        Cooling system of the gas turbine
4.5       Features of centripetal turbine design
5           Blade strength
5.1        Loads, stress, and deformations in a blade.
5.1.1     Static loads
5.1.2     Dynamic loads
5.1.3     Main assumptions for blade strength calculation
5.2       Calculation of tensile stress
5.2.1     Stress calculation for the analytical law of blade cross-section area
5.2.2     Table set of the area law of blade cross-section
5.2.3     Tensile stress due to blade cross-section
5.3       Calculation of bending moments due to gas load
5.4       Calculation of bending moments due to centrifugal load
5.5       Blade unloading from bending moments.
5.6       Bending stress
5.7       Sum stress and safety coefficient
6           Blade/disc strength
6.1       Dovetail joint
6.2       Fork (articulated) joint
6.3       Fir-tree joint
7           Disc strength
7.1       Loads, stress, and deformations in a disc
7.2       Equilibrium equation and equation of joined strains
7.3       Disc of constant thickness
7.3.1     Stress from external load Oa(A=O; T=0)
7.3.2     Stress from external load Otgh( Oa=0;t=0)
7.3.3     Stress from centrifugal load due to the mass of the disc ( Oa=0; t=0)
7.3.4     Stress due temperature deformations (=0; a=0)
7.3.5     Sum stress and main conclusions
7.4       Disc of any profile
7.4.1     Method of finite differences
7.4.2     Integral method
7.5       Special variants of disc calculations
7.5.1     Disc of equal strength
7.5.2     Disc with wide rim
7.5.3     Disc with eccentric holes
7.6       Safety coefficients for a disc
7.6.1     Evaluation of disc strength by equivalent stress
7.6.2     Evaluation of disc strength by breaking revolutions
7.7       Influence of plastic deformations on disc strength
7.8       Disc creep
8           Combustion chambers
8.1       Classification of combustors
8.1.1     Classification due to structure configuration
8.1.2     Classification due to the direction of flow motion
8.1.3     Classification due to method of fuel supply
8.2       Features of the combustion process
8.3       Combustor component design
8.3.1     Diffuser section
8.3.2     Flame tube head
8.3.3     Dilution system
8.3.4     Cooling system
8.4       Combustion chamber arrangement
8.4.1     Combustor casing
8.4.2     Flame tubes
8.4.3     Flame tube securing
8.5       Ignition system features
9           Strength and stability of envelopes and drums
9.1       Strength of stationary envelopes 
9.1.1     Envelope strength due to a pressure difference
9.1.2     Envelope strength doe to torque
9.1.3     Envelope strength doe to thermal deformations
9.2       Strength of rotation envelopes (drum and drum sections)
9.3       Stability of envelopes
10        Blades, discs, and envelope vibrations
10.1      Excitation of vibrations
10.2      Natural spectrum of blade oscillations
10.2.1  Natural modes of solitary blades
10.2.2  Natural frequencies of blades     Methods of frequency determination     Influence of structural and operational factors.
10.3      Forced vibrations
10.3.1  Resonant vibrations
10.3.2  Non-resonant vibrations
10.3.3  Self-excited vibrations
10.4      Methods of diverting dangerous vibrations of blades
10.4.1  Change of spectrum and intensity of excitation loads
10.4.2  Change of natural spectrum of blades
10.4.3  Damping of vibrations
10.4.4  Increase of fatigue strength
10.5      Disc vibrations
10.5.1  Natural modes and frequencies of stationary discs
10.5.2  Natural frequencies and forced vibrations of a rotating disc
10.6      Vibrations of envelopes
10.7      Experimental research of vibrations
10.7.1  Methods of vibration excitation
10.7.2  Methods of measurement of natural and forced vibration characteristics.