Producto añadido correctamente al carrito

Cantidad
Total
Continuar comprando

Realizar pago

Ingeniería Ingles

Suscribete a nuestro newsletter

Nuevo Data Analytics Applied to the Mining Industry. Tapa dura Ver más grande

Data Analytics Applied to the Mining Industry. Tapa dura

Nuevo

Autor: Ali Soofastaei

Editorial: CRC Press

Edición: Primera, 2021

Formato: Libro
Tapa dura
272 páginas

Peso: 0,66 Kg

ISBN: 9781138360006

Más detalles


COP$ 807.000

Ficha técnica

ISBN9781138360006
EdiciónPrimera
AutoresAli Soofastaei
EditorialCRC Press
FormatoImpreso
Peso0.66 kilos
Páginas272
Año2021

Más

Costos de importación incluidos en el precio

Se despachará desde nuestras instalaciones entre el lunes 23 de agosto y el viernes 27 de agosto. Lo recibirás entre 1 y 5 días hábiles después del envío.

Reseña.

Data Analytics Applied to the Mining Industry describes the key challenges facing the mining sector as it transforms into a digital industry able to fully exploit process automation, remote operation centers, autonomous equipment and the opportunities offered by the industrial internet of things. It provides guidelines on how data needs to be collected, stored and managed to enable the different advanced data analytics methods to be applied effectively in practice, through use of case studies, and worked examples. Aimed at graduate students, researchers, and professionals in the industry of mining engineering, this book:

- Explains how to implement advanced data analytics through case studies and examples in mining engineering

- Provides approaches and methods to improve data-driven decision making

- Explains a concise overview of the state of the art for Mining Executives and Managers

- Highlights and describes critical opportunity areas for mining optimization

- Brings experience and learning in digital transformation from adjacent sectors

Contenido.

1. Digital Transformation of Mining.

2. Data Analytics and the Mining Value Chain.

3. Data Collection, Storage and Retrieval.

4. Making Sense of Data.

5. Analytics Toolset.

6. Making Decisions based on Analytics.

7. Process Performance Analytics.

8. Process Maintenance Analytics.

9. Data Analytics for Energy Efficiency and Gas Emission Reduction.

10. Future Skills Requirements.